0 . 45 = I RAMP × R SLC × D + I L _ pk Limit × R CS
V OUT ? V IN MIN ) × R CS
R SLC =
Eq. (13)
L = IN
= 43 μ H
12 V × 0 . 56 × 2 μ s
R CS =
Eq. (13a)
I in _ PP =
V IN _ nom × D nom × T 12 v × 0 . 56 × 2 us
R CS =
( 28 v ? 8 v ) × ( 0 . 50 ) + 1 . 9 A = 179 m Ω
( 28 ? 8 ) × 150 m Ω
R SLC = = 511 Ω
( I IN _ RMS _ max ) 2 ? ( I IN 12 PP )
Eq. (13b)
I IN _ AVE _ max =
Micrel, Inc.
(see the current waveforms in Figure 5).
It can be difficult to find large inductor values with high
saturation currents in a surface mount package. Due to
this, the percentage of the ripple current may be limited
by the available inductor. It is recommended to operate
in the continuous conduction mode. The selection of L
described here is for continuous conduction mode.
V × D × T
I in _ PP
Using the nominal values, we get:
L =
0 . 31 A
Select the next higher standard inductor value of 47μH.
Going back and calculating the actual ripple current
gives:
= = 0 . 29 A PP
L 47 uh
The average input current is different than the RMS input
current because of the ripple current. If the ripple current
is low, then the average input current nearly equals the
RMS input current. In the case where the average input
current is different than the RMS, Equation 10 shows the
following:
2
_
MIC3230/1/2
Eq. (14a)
To calculate the value of the slope compensation resistance,
R SLC , we can use Equation 5:
MAX
L × 250 μ A × F SW
First we must calculate R CS , which is given below in
Equation 15:
Eq. (15) 0 . 45
( VOUT MAX ? VIN MIN ) × D max + I L _ pk Limit
L × F SW
Therefore;
0 . 45
47 μ H × 500 kHz
Using a standard value 150m ? resistor for R CS , we obtain
the following for R SLC :
47 μ H × 250 μ A × 500 kHz
Use the next higher standard value if this not a standard
value. In this example 511 ? is a standard value.
Check: Because we must use a standard value for Rcs and
R SLC; I L _ pk Limit may be set at a different level (if the calculated
value isn’t a standard value) and we must calculate the
actual I L _ pk Limit value (remember I L _ pk Limit is the same as
I IN _ AVE _ max =
( 1 . 64 ) 2 ? ( 0 . 29 ) 2 / 12 ≈ 1 . 64 A
I in _ pk Limit ).
I in _ pk Limit =
I in _ actual Limit =
= 2 . 34 A
Eq. (13c) P INDUCTOR = I in _ RMS _ max × DCR
The Maximum Peak input current I L_PK can found using
equation 11:
I L _ PK _ max = I IN _ AVE _ max + 0 . 5 × I L _ PP _ max = 1 . 78 A
The saturation current (I SAT ) at the highest operating
temperature of the inductor must be rated higher than
this.
The power dissipated in the inductor is:
2
Current Limit and Slope Compensation
Having calculated the I L_pk above, We can set the current
limit 20% above this maximum value:
I L _ pk Limit = 1 . 2 × 1 . 6 A = 1 . 9 A
The internal current limit comparator reference is set at
0.45V, therefore when V IS _ PIN = 0 . 45 , the IC enters
current limit.
Eq. (14) 0 . 45 = ( V A PK + Vcs PK )
Where V A PK is the peak of the V A waveform and
Vcs PK is the peak of the Vcs waveform
Rearranging Equation 14a to solve for I L _ pk Limit :
( 0 .45 ? I RAMP × R SLC × D )
R CS
( 0 . 45 ? 250 ua × 511 × 0 . 75 )
. 150
This is higher than the initial 1 . 2 × I L _ PK _ max = 1 . 9 A limit
because we have to use standard values for R CS and for
R SLC . If I in _ actual Limit is too high than use a higher value for
R CS . The calculated value of R CS for a 1.9A current limit was
179m ? . In this example, we have chosen a lower value
which results in a higher current limit. If we use a higher
standard value the current limit will have a lower value. The
designer does not have the same choices for small valued
resistors as with larger valued resistors. The choices differ
from resistor manufacturers. If too large a current sense
resistor is selected, the maximum output power may not be
able to be achieved at low input line voltage levels. Make
sure the inductor will not saturate at the actual current limit
I in _ actual Limit .
Perform a check at I IN =2.34Apk.
V IS _ PIN = 250 μ A × ( 0 . 78 ) × 511 Ω + 2 . 34 A × 150 m Ω = 0 . 45 V
March 2011
14
M9999-030311-D
相关PDF资料
MIC3263YML TR IC LED DRIVER 6CH BKLT 24-MLF
MIC3287-24YD6 TR IC LED DRIVR WHITE BCKLGT TSOT-6
MIC3289-16YD6 TR IC LED DRIVR WHITE BCKLGT TSOT-6
MIC3291-18YML TR IC PWM WLED DVR 1.8V 1.2MHZ 8MLF
MIC4100YM IC DRIVER MOSFET 100V CMOS 8SOIC
MIC4102YM IC DRIVER MOSFET 100V TTL 8SOIC
MIC4103YM IC MOSFET DRIVER 100V CMOS 8SOIC
MIC4124YME IC MOSFET DRVR DUAL NONINV 8SOIC
相关代理商/技术参数
MIC3231YTSE TR 功能描述:LED照明驱动器 Boost Driver Controller with Dither for High Power LEDs RoHS:否 制造商:STMicroelectronics 输入电压:11.5 V to 23 V 工作频率: 最大电源电流:1.7 mA 输出电流: 最大工作温度: 安装风格:SMD/SMT 封装 / 箱体:SO-16N
MIC3232YMM 功能描述:LED照明驱动器 400kHz Fixed Frequency Boost Driver Controller for High Power LEDs RoHS:否 制造商:STMicroelectronics 输入电压:11.5 V to 23 V 工作频率: 最大电源电流:1.7 mA 输出电流: 最大工作温度: 安装风格:SMD/SMT 封装 / 箱体:SO-16N
MIC3232YMM EV 功能描述:LED 照明开发工具 400kHz Fixed Frequency Boost Driver Controller for High Power LEDs - Evaluation Board RoHS:否 制造商:Fairchild Semiconductor 产品:Evaluation Kits 用于:FL7732 核心: 电源电压:120V 系列: 封装:
MIC3232YMM TR 功能描述:LED照明驱动器 400kHz Fixed Frequency Boost Driver Controller for High Power LEDs RoHS:否 制造商:STMicroelectronics 输入电压:11.5 V to 23 V 工作频率: 最大电源电流:1.7 mA 输出电流: 最大工作温度: 安装风格:SMD/SMT 封装 / 箱体:SO-16N
MIC3263 制造商:MICREL 制造商全称:Micrel Semiconductor 功能描述:Six-Channel WLED Driver for Backlighting Applications with Flicker-Free Dimming
MIC3263YML 制造商:Micrel 功能描述:6 Channel WLED Driver for Backlighting
MIC3263YML EV 制造商:Micrel Inc 功能描述:
MIC3263YML TR 功能描述:LED照明驱动器 Six Channel WLED Driver for Backlighting Applications RoHS:否 制造商:STMicroelectronics 输入电压:11.5 V to 23 V 工作频率: 最大电源电流:1.7 mA 输出电流: 最大工作温度: 安装风格:SMD/SMT 封装 / 箱体:SO-16N